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ABSTRACT 

An analysis is presented of the equation f ( x  + a) -- f ( x )  = e -  x {f(x) -- 
f . (x--b)} .  Here a and b denote arbitrary positive constants, and a solution 
is sought which satisfies the following conditions: f(-- ~ )  =0,  f(  + cx3) = 1, 
0 =3q< (x) =< 1 • Existence and uniqueness, of solution, are established,, and then 
an analytical form of the solution is obtained by use of bxlateral Laplace 
transform. 

1. This paper is devoted to a study of the difference equation 

(1) f ( x  + a) - f ( x )  = e - X { f ( x )  - f ( x  - b)}, 

which arose in connection with a certain model for a/earning process. (See [1], 
[2].) Here a and b denote positive constants and f ( x )  denotes, for each value 
of x, a probability of absorption, so that the inequalities 0 < f ( x )  < 1 must be 
satisfied. The appropriate boundary conditions are given by f ( -  o o ) =  0, 
( + oo) = 1. Since f does not denote a cumulative distribution function, mono- 

tonicity is not required. However, it will be shown that there exists a unique 
bounded function which satisfies (1) and the prescribed conditions at + 0% and 
that this solution is monotone; thus, the inequalities 0 < f ( x )  < 1 will certainly 
be satisfied. 

It is immediately seen that (1) possesses at most one continuous solution satis- 
fying the boundary conditions. For, if g(x) were the difference of  two distinct 
such solutions, it would satisfy (1) and vanish at _ 0% so that it would attain 
a positive maximum (or negative minimum) on a non-empty compact set S. 
Setting x in (1) (with f replaced by g) equal to the maximum of S, one immediately 
obtains the desired contradiction. A simple modification of this argument suffices 
to show that uniqueness also holds under the weaker hypothesis of boundedness. 

Suppose now that f ( x )  is a function of bounded variation which satisfies (1) 
and the boundary conditions. From the continuity of the factor e -x it follows 
that the right-hand limit, f ( x  + 0), also satisfies (1), and the same is then true 
of  the right-hand discontinuity, 

Received, March 8, 1966. 
* Research supported by the National Science Foundation, Grant GP-2558. 

145 



146 B. EPSTEIN [September 

(2) s(x) = f ( x  + O) - f (x) .  

I f  f ( x )  possessed any right-hand discontinuities, s(x) would assume non-zero 
values on a non-empty set {x~, x2, ""}, finite or denumerable, and the inequality 

(3) ~ Is(  )l < oo 

would hold. Assuming that s(x) takes positive values, we choose for x the point 
at which it attains its maximum (or the largest of  these, if there are several); 
we thus obtain s(x + a) - s(x) < O, s(x) - s(x - b) > O, contradicting (1) (with 
f ( x )  replaced by s(x)). If s(x) is supposed to assume negative and zero values 
only, a similar argument is employed. Therefore, s(x) must vanish identically; 
similarly, f ( x )  possesses no left-hand discontinuities, and so it must be continuous. 

We shall now obtain, by two different methods, a monotone and a continuous 
solution, respectively, of (1), both satisfying the boundary conditions. It will 
then follow from the above remarks that the two solutions coincide. 

2. In this section we shall construct by iteration a monotone solution of  (1). 
It will be convenient to re-write (1) in the form 

(4) f ( x )  = w(x) f (x  + a) + (1 - w(x))f(x  - b), 

where w(x)= eX/(1 + eX). It is natural to attempt to construct a solution by 
iteration, beginning with a more or less arbitrary initial function fo(x): 

(5)  fn+l(x) = w(x)f ,(x + a) + (1 - w(x))f,(x - b), n > O. 

It is immediately evident that if fo(x) satisfies the boundary conditions, the same 
will be true of  all the succeeding functions f l (x) ,  f2(x) , -" .  The monotonicity 
and the positivity of  the factors w(x) and 1 - w(x) are readily seen to imply that, 
if fo(x) is monotone, all the succeeding functions will also possess this property. 
Finally, the positive character of  the factors w(x) and 1 - w(x) evidently guarantees 
that if fo(x) is so chosen that f l (x)  > fo(x) holds everywhere, then, more generally, 
fn+l > f , (x)  will also hold everywhere; similarly if the inequalities are reversed. 

Now suppose that we can find monotone functions, fo(x) and go(x), both 
satisfying the boundary conditions, such that the inequalities f o ( x )< f l ( x ) ,  
go(x) > gl(x) hold everywhere. Then it is immediately evident that the sequences 
fo(x) , f l (x) ,""  and go(x),gl(x), . . ,  converge pointwise to monotone functions, 
f (x)  and g(x) respectively, which satisfy (1). If, furthermore, fo(x) < go(x) holds 
everywhere, it then follows immediately from (5) (and the analogous equation 
for the g's) that f , (x)  < gn(x) everywhere. Thus, f ( x )  < go(X), and so 

(6a )  0 < / (  - < go(  - oo) = O. 
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Similarly, 

(6b) 1 = go( + ~ )  > f ( +  c~) >__ f0( + ~ )  = 1. 

Thus, f ( x )  satisfies (1) and the prescribed boundary conditions; similarly for 
g(x), and so, by the introductory remarks, f ( x )  = g(x). 

It remains to demonstrate a pair of functions {fo(x),go(x)} satisfying the 
conditions imposed in the preceding paragraph. Simple calculations show that 
the following choices will suffice, provided a > b: 

/ - 2 k ( k  - 1 )  

(7a) fo(x) = { 2 k ( k  1)} ' n a < x < ( n + l ) a ,  n > l ;  

(7b) 

f 

_.4_a ( x _ ~2), 

go(x) = l 1, 

x <  --y,  

x >  --7. 

2a log 2 
b 

(The aforementioned restriction, a > b, is immediately set aside by the following 
observation: If the unique solution which has been shown to exist for a = b 
is denoted as f ( x ; a , b ) ,  then 1 - f ( -  x ;b ,a )  satisfies (1) and the boundary 
conditions when b > a. Therefore, we may confine attention to the case a > b.) 

Thus, we have demonstrated the existence of a solution to the given problem, 
and it follows from (7a) and (7b) that the boundary values are approached with 
Gaussian rapidity: 

(8a) 

(8b) 

f ( x )  = O(exp { - x2/4a}), x ~ - oo, 

f ( x )  = 1 -O(exp{  - 1 -e)x2/2a}),  x ~  + ~ .  

3. We now proceed to obtain an analytical expression for the solution whose 
existence has been demonstrated in the preceding section. The rapid approach 
of f ( x )  to its limiting values at + ~ ,  as indicated by (8a) and (8b), guarantees 
the existence, for all values of the complex parameter s ( = o" + it), of the bilateral 
Laplace transform 

(9) f?ooe -~:'{f(x) - u(x)} dx. 
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[Here u(x) denotes the "unit  step-function" 1/2(1 + sgnx).] Therefore, the 
integral 

(10) f(s) = x)e-'Xdx 

exists for a > 0 and may be analytically continued to the whole (finite) s-plane 
except for a simple pole of  residue + I at the origin. From (1) one readily obtains, 
for a > O, 

](s){e °~- 1} = f(s  + 1){1 - e-a(~+l)}, 

o r  

(11) f(s) = f(s + 1)e -"~ 
1 - -  e - b ( s + l )  

1 - e - a s  

To eliminate the factor e -"~ , let 

(12) f ( s )=exP  { 2 ( s2 - s ) }  } g(x). 

Then from (11) and (12) one obtains 

g(s) = g(s + 1) 
1 - -  e - b ( s + l )  

1 - -  e - a s  ' 

and more generally, for any positive integer k, 

(13) 
1 - -  e -b(s+k)  

g ( s  + k --  1) = g ( s  + k )  1 - e - a ( s + k - t )  " 

Writing out (13) for k = 1,2, . . . ,n  and then multiplying and simplifying, one 
obtains 

g(s) = g(s + n) 
f i  {1 - e -b("+k)} 

1 - -  e - a ( s + n )  k = l  

1 - e -o~ f i  { I  - e -"c~+~  } 

k = l  

(14) 

Letting n ~ oo, one easily sees that the two products appearing in (14) converge 
for all s, not only for tr > O; it follows that g(s + n) converges to an entire function, 
which will be denoted as h(s). Since h(s) = l im~  ~o g(s + n) = lira..., oo g(s + (n + 1)) 
= lim~_,® g((s + 1) + n), it follows that 



1966] 

(15) 

DIFFERENCE EQUATION IN LEARNING-THEORY MODEL 

h(s + 1) = h(s). 
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Thus, from (14) one obtains 

h(s) 
(16) g ( s )  = i - e - ~  

and hence 

f l  {1 - e -~(~+k) } 
k = l  

f i  {1 - e -°~+k) } 
k = l  

(17) f (s)  = 

c o  

e ("/2)~2 h(s) k~l {1 - e-bO+k)} 

2 sinh as~2 
f i  {1 - e -"(s+~')} 

k = l  

Now, the infinite product appearing in the numerator in (17), which we shall 
henceforth denote by b(s), possesses simple zeroes at the points s = - k + (2rmri/b) 
(k > 0, m ~ 0), while the other product, which will be denoted a(s), has simple 
zeros at s = - k + (2mzi/a)  (k > 0, m ~ 0). Thus, the quotient of  these products 
is analytic and different from zero at the negative integers, but possesses simple 
poles at the points s = - k + (2mrci/a) (k > 0, m # 0). (Actually, this assertion 
is justified only if b/a is irrational, for otherwise some of  the non-real zeroes of  
the numerator and denominator cancel each other out; nevertheless, the final 
result is easily seen to be valid for rational as well as irrational values of  b/a.) 
Since f (s)  must be analytic everywhere except at the origin, the factor h(s) must 
possess zeroes at the non-real zeroes of a(s) and of  sinha2/2; i.e., at the points 
- k + 2mrri/a (k > 0, m # 0). From the periodicity property (15) it then follows 
that h(s) must vanish at the points - k + ( 2 m r c i / a )  ( k ~ O , m  ~0).  Now, the 
theta-function 01(ns, exp ( - 21rZ/a)), which for brevity will henceforth be denoted 
O(s), is entire and possesses simple zeroes at the p o i n t s - k  + 2mrci/a (k ~ O, 
m ~ 0); furthermore, 

( 1 8 )  O(s + 1 )  = - O(s). 

Hence, the entire function O(s)/sin zs has simple zeroes at precisely the points 
which have been shown to be zeros of  h(s), and it is periodic with period one. 
It follows that 

O(s) 
(19) h(s) = finns H(s), 

where H(s) is also an entire function with period one. From (17) we now obtain 
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(20) H(s) = a(s) 2 sinh as/2 sin zcs ~ 
b(s) exp(as2]2) ~(s) f ( s ) .  

It will be shown next that H(s) must reduce to a constant. For all values of  s, 
the inequality 

(21a) 
12sinha"2sin ' {al l a,2 } 

exp(as2[2) ] _<_ 2exp - - 2 ~  - atr2 + - -~  + I 

is easily verified; furthermore, for some positive integer N, the inequality 

(21b) [ o(s) b-N] <2 
holds whenever ~ > N, since each of  the functions a(s), b(s) is readily seen to 
approach unity as a ~ + oo. Now, to obtain a suitable estimate on 10(s)I, one 
employs the identity 

(22) 0 s +  2~ia  - 0 ( s ) e x p  - 2 ~ i s + ~  . 

Using (22) repeatedly, one obtains for any positive integer n the equality 

- -  ° 

a 

Thus, by setting s = a + (gila), one obtains the following inequality, which is 
valid everywhere on the line t = (~(2n + 1)/a : 

(24) ]0(s)l > Cexp { 2n2n+a2n2n2 } ' 

where C denotes the positive minimum of 10(s) l on the line t = rc/a. Finally, 
since f (x )  is everywhere positive, it follows from (10) that the inequality 

(25) lf(s)l 
holds everywhere in the half-plane a > 0. Taking account of these several ine- 
qualities, one finds that, on the line segment N < a < N + 1, t = (n(2n + 1)/a), 
the inequality 

(26) I H(s) I < C' exp 2rc2n 
= a 

holds, where C' = (4/C)exp(3rc2/2a). By periodicity, however, the above restric- 
tion N < tr < N + 1 may be dropped, so that (26) holds everywhere on the line 
t = n(2n + 1)/a. Now let s be confined momentarily to real values. As a smooth 
periodic function, H(s) can be expanded in a convergent Fourier series: 
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H(s) = ~, Cke 2*i*', Ck = ~l H(s)e ds. 
k = - o o  d o  

Employing the Cauehy integral theorem, one obtains 

= fr H(s)e - 2,ak~ ds, (28) Ck 

where Fn denotes the path consisting of the vertical and upper sides of the rect- 
angle with vertices at 0, 1, ~(2n + 1)i/a, and 1 + (~(2n + 1)i/a). By periodicity, 
the integrals along the vertical sides cancel, and one is left with the integral along 
the upper side of the rectangle. Taking account of (26), one obtains 

(29) I ck I < C' exp --a-- / + n(2k + 1)] 

Since n may be chosen arbitrarily large, it follows from (2) that ck must vanish 
for negative values of k. For positive values of k the same result is obtained by 
integrating in the lower half-plane. Therefore, H(s) must reduce to a constant 
on the real axis, and hence, as asserted above, everywhere. The value of this 
constant is determined by the condition, stated after (10), that f(s) must have 
a residue of + 1 at the origin. In this way we are led to the formula 

C" expas2/2 0(s) b(s) 
f(s) = 2 sinh as~2 sin rcs a(s) ' (30) 

where 

(31) 
rra a(0) 

C p  _ _  _ _  0'(0) b(0)" 

Thus, the function f (x )  whose existence was demonstrated in the previous 
section must admit the integral representation 

1 fo°+i~e~Xf(s)ds, a o > 0 .  (32) y(x) = 2rri ~oo-,oo 

Alternatively, one could have obtained (32), independently of the considerations 
of the preceding section, simply by assuming the existence of a solution to the 
given problem whose behavior near _+ oo permits the use of the analytic device 
which we have employed. It is then quite simple to justify this procedure a 
posteriori by showing directly that (32) defines a continuous functionf(x) satisfying 
(1) and the prescribed boundary conditions; as might be expected, the proof that 
the boundary conditions are satisfied involves a suitable change in the path of 
integration and an application of the Riemann-Lebesgue lemma. (In fact, f(x) is 
easily shown to be analytic in the complex variable x in a strip of width 2rr about 
the real axis, and to depend continuously on the parameters a and b.) However, 
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we have been unable to establish directly from (32) either the monotonicity off(x) 
(or even the inequalities 0 <f(x)< 1) or the estimates (8a), (8b). 

4. It is to be expected that the case a = b should be particularly simple. By a 
quite elementary argument one obtains the solution [2, p. 1061 

(33) 

~ exp{  (x-na)22a + x2"-----na} 
f(x) = n=o 

{ ( x -  na)  
exp + 

~=_~ 2a 

It may be remarked that no assumption of any sort, even of boundedness or 
measurability, is needed. It might be of interest to investigate whether uniqueness 
can be demonstrated in the case a # b under conditions appreciably weaker than 
boundedness. 

Finally, we remark that by taking account in (30) and (32) of the expansion 

(34) O(s) = constant. ~, ( - 1)kexp{-2~Zk(k + 1)/a} sin(2k + 1)zcs 
k=O 

we may obtain, in the case a ~ b, a series expansion off(x) which constitutes a 
generalization of (33), the rapid convergence of (34) will presumably be reflected, 
for "reasonable" values of a and b, in the rapid convergence of the expansion of 

f(x). 
5. I wish to express appreciation to Professor N.J.  Fine, with whom I have 

discussed this problem. His solution, worked out quite independently, has some 
overlap with the one presented here. 
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